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Micromechanics of multiple cracking
Part I Fibre analysis
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Fibre-reinforced brittle materials exhibiting a strain-hardening tensile behaviour undergo
a multiple cracking process. A micromechanical analysis of a straight smooth fibre, bridging
one or several cracks in a multiply-cracked composite is introduced, taking into account the
full or elastic bond, gradual debonding, and frictional sliding of the fibre. Equilibrium is
satisfied by means of a two-fibre system introducing a symmetry fibre within the segment.
Equations for different debonding cases are derived. The fibre ends are analysed using
a simplified approach, the validity of which is discussed. The system equations are derived
from the compatibility condition of equal crack widths. Two examples are analysed to study
the effects of crack spacing. 1998 Kluwer Academic Publishers
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1. Introduction
Composites have become important materials in the
construction industry, as well as in other fields like the
automotive, space and engineering industries. Brittle
materials, such as concrete and ceramics reinforced
with fibres, exhibit ductile behaviour after cracking
and are therefore gaining increasing interest among
engineers. Before designing structures for new applica-
tions meeting certain requirements, the behaviour of
the material must be known.

Fibres are effective primarily after cracking, where
they bridge the crack. With randomly oriented short
fibres added to the mix, the composite usually fails in
a single fracture mode, improving the ductility of the
material. However, the improvements in strength or
strain capacity are insignificant. To increase them, the
fibres at the crack must be able to sustain the load
needed for crack formation without being broken or
pulled out of the matrix. If this condition is fulfilled,
the matrix fails successively and divides into segments
of similar lengths. This process is called multiple
cracking. Beyond the multiple cracking stage, the
composite shows strain-hardening behaviour until
crack localization occurs due to fibre breakage or
pull-out.

The multiple cracking process and subsequent
strain-hardening behaviour can be produced by
tailoring some of the material parameters. First, the
usage of continuous and aligned fibres [1] leads per-
haps to the highest strength. The main disadvantage is
the difficulty and cost of processing. Second, the fibre
content of randomly oriented, discontinuous fibres
can be increased until the mix becomes too stiff to
produce [2, 3]. Third, fibres with a high aspect ratio,
l
&
/d, can be used, where l

&
and d are the fibre length and

the fibre diameter, respectively [4]. However, the
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Figure 1 Assumed bond-slip relation between fibre and matrix.

higher the aspect ratio, the lower the fibre volume
content that can be incorporated into the mix [5].
Fourth, improving the bond properties to prevent fibre
pull-out can lead to a multiple cracking process, unless
the fibres break as the crack forms. The bond can be
increased either chemically by affecting the bond char-
acteristics, or mechanically using deformed fibres [6].

There are quite a number of computational models
for the fibre pull-out problem [7—14]. They can be
used to model the constitutive behaviour, or the
stress—crack width relation of composites failing by
a single fracture mode [7, 13, 15—17]. However, in the
modelling of multiply-cracked composites, if the fibre
extends over several cracks, the boundary conditions
differ from those of the above fibre pull-out problem.
Analytical models for multiple cracking have been
presented by Aveston et al. [1] for composites with
continuous aligned fibres, assuming a frictional bond;
Aveston and Kelly [18] for composites with non-
parallel, continuous fibres taking into account the
elastic bond and partial debonding; Aveston et al. [5]
and Kullaa [17] for short random fibres assuming
a frictional bond; Tjiptobroto and Hansen [3, 19] who
defined the energy terms during cracking for com-
posites with random discontinuous fibres; Li and
Leung [20] who stated the conditions for steady-state
cracking; and Li et al. [21] who utilized the energy
approach of fracture mechanics to study matrix crack-
ing and debonded length of continuous aligned fibres.

To analyse the mechanical behaviour of fibre-rein-
forced brittle materials, a new micromechanical model
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of the multiple cracking process is introduced. It is
based on the analysis of a single fibre with a random
location and orientation bridging one or several
cracks. Because the forces in the fibre at the adjacent
cracks may differ, the existence of a symmetry fibre is
assumed to satisfy equilibrium conditions. The sym-
metry fibre was first introduced by Kullaa [17] for
a purely frictional bond, and [22] for elastic or full
bond. In the present study, the gradual debonding and
sliding of the fibre is introduced and analysed. Differ-
ent cases must be analysed, depending on the lengths
of the debonded zones. Debonding is assumed to
initiate if the interface shear stress exceeds the inter-
facial shear strength as proposed by Naaman et al.
[8], Lim et al. [13], and Leung and Li [10]. Stang
et al. [11] and Leung [9] also proposed a fracture-
based debonding theory, and compared the two the-
ories. They found that both analyses are identical,
provided the effective shear strength is chosen. After
debonding a constant frictional shear stress is as-
sumed (Figure 1).

In the elastic or full bond stage, a linear relationship
between the interface shear stress and the relative dis-
placement between the fibre and the matrix is chosen
[8, 11—13, 18, 22—25]. This constitutive relation leads to
a linear relationship between the pull-out load and the
fibre end displacement. However, the coefficient, or the
bond modulus, is not a constant but depends on the
fibre diameter, the fibre volume content, and the
moduli of elasticity of the fibre and the matrix [26].

In a multiply-cracked composite, the crack widths
and crack spacings are assumed to be equal. The
assumption of equal crack widths is justified for
a composite exhibiting strain-hardening behaviour,
because the distribution of fibres is supposed to be
equal at every crack. However, in the strain-softening
stage, crack localization occurs, causing one crack to
open whereas the others close. The widths of the
closing cracks can be assumed to be mutually equal. If
the crack width is fixed, the fibre forces at the cracks
can be solved and the distributions of the forces in the
fibre and the matrix as well as the interfacial shear
stress computed.

2. A two-fibre system
Leung [9] stated that if the stress gradient between
adjacent fibres is small, the shear stress in the matrix
halfway between the fibres can be taken as zero. The
Figure 2 Hexagonal fibre arrangement and the fictitious two-fibre system.



fibres can then be treated as independent. This as-
sumption is only justified if the fibres are pulled out in
the same direction, which is the case in a single frac-
ture mode.

In multiply-cracked discontinuous fibre composites
with a fibre bridging two adjacent cracks, the fibre
forces at the cracks may differ and thus be out of
balance. It follows that the shear stress in the matrix
halfway between the fibres must be different from zero,
because of a stress transfer from the fibre to other
fibres in order to satisfy the equilibrium condition.
This also means that fibres cannot be analysed inde-
pendently, but the interaction must be taken into
account. Let A

&
and A

.
be the cross-sectional areas of

a fibre and its surrounding matrix, respectively. Sup-
posing that every fibre interacts with n surrounding
fibres, for example n"6 for a hexagonal fibre array
shown in Fig. 2a, a single fibre interacts, on average,
with a total fibre area of A

&
via a matrix area of 2A

.
.

The surrounding fibres can then be modelled as a single
fibre with a total cross-sectional area of A

&
together

with its surrounding matrix area of A
.
. The arrange-

ment of fibres need not be hexagonal, nor the fibres
aligned, because only an average stress in the matrix is
considered. Only a constant fibre volume content in
every cross-section of the composite is assumed.

This leads to the introduction of a fictitious two-
fibre system, with two fibres being analysed simulta-
neously. For the equilibrium condition, the choice of
one crack force in the second fibre is arbitrary, the
other depending on this choice. Because the second
fibre represents surrounding fibres, an average fibre
should be chosen. However, the average force distri-
bution in a fibre is unknown. Therefore, the second
fibre is idealized as having a symmetrical force distri-
bution which is a mirror image of that in fibre 1 (Fig.
2b) [22]. The problem with two symmetrical fibres is
relatively simple to analyse, and satisfies the force
equilibrium. However, the assumption of a symmetry
fibre may lead to inaccuracy in relative fibre displace-
ments, if the fibre force is much different from the
average. In the average sense, the error probably de-
creases when deriving the macromechanical behav-
iour considering all fibres.

The analysis of a two-fibre system is as follows. In
the case of an elastic bond between fibre 1 and the
matrix, a second-order differential equation for the
fibre force F

1
is derived [22]
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are the tensile forces in fibres 1 and 2,
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crack spacing); E
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are the moduli of elasticity
of the fibre and the matrix, respectively; w is the
perimeter of the fibre, and j the bond modulus,
defined by

s"jS (4)

where q is the interfacial shear stress between the fibre
and the matrix and S is the relative displacement
between the fibre and the matrix.

2.1. Elastic bond in both fibres
If the bond also between fibre 2 and the matrix is

elastic, a differential equation similar to equation 1
can be derived for fibre force F

2
. The distributions of

the fibre forces can then be solved from fourth-order
differential equations [22], and read
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The coefficients A, B, C, and D are determined from
the boundary conditions.

2.2. Frictional bond in the other fibre
If the bond between fibre 1 and the matrix is elastic
and only constant frictional between fibre 2 and the
matrix, the analysis is as follows. The differential
Equation 1 for F

1
still holds and becomes
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Because F
2
(x) is a polynomial of first order, the solu-

tion of the differential equation 9 takes the form
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and the coefficients G and H are determined from the
boundary conditions. Corresponding equations can be
derived for the case of a full bond between fibre 2 and
the matrix and frictional bond between fibre 1 and the
matrix.

3. System equations
The relative displacement of the fibre at the crack can
be expressed by a sum of three terms: the relative
displacement of the fibre at an arbitrary position with-
in the segment, the increase of the displacement from
that point to the crack, and the elastic elongation of
the fibre at the crack. Mathematically, this can be
4215



written for the left and right sides of the crack, respec-
tively, as
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where *-
i
and *3

i
are the relative displacements of the

fibre at the left and right side of crack i, respectively,
e
&
and e

.
are the strains in the fibre and the matrix,

respectively, li`1
1

is the debonded length at the left end
of segment i#1 and li

2
is the debonded length at the

right end of segment i.
The last terms in Equations 12 and 13 are the elastic

elongations of the fibre at the crack, u
i
being the rigid

body displacement of the fibre within segment i, and
P
i
the force in the fibre at crack i. It should be noted

that u
i
is only non-zero if the fibre slides within the

segment. Numbering of the cracks and segments is
such that the crack i is located immediately to the
right of segment i (see Fig. 3). The first terms in
Equations 12 and 13 are the relative displacements at
point x"l!li

2
in segment i and at point x"li`1

1
in

segment i#1, respectively.
Before complete debonding and fibre sliding, the

displacements at the ends of the full bond region are
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After complete debonding from one side of the crack
only, the fibre slides within the segment, and the first
terms in Equations 12 and 13 become, respectively

S
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S
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It should be noted that if the fibre slips to the left
within the segments i and i#1, the debonded lengths
are li`1

1
"l and li

2
"0. The second term in Equation

12 is then zero, and the integration over the whole
segment is carried out only to compute the displace-
ment *3

*
at the right side of the crack. Similarly, if the

fibre slips to the right, li`1
1

"0 and li
2
"l, the second

term in Equation 13 becomes zero, and the integration
is only needed to compute *-

i
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The unknown variables are the rigid body motions
u
i
, and the fibre forces at the cracks. To solve the

unknowns, the compatibility conditions between them
are needed. They are obtained from the relative dis-
placements by setting the crack widths equal to w

*-
i
!*3

i
"w (18)

The last terms in Equations 12 and 13 consist of
a product of the unknown variables. Therefore, Equa-
tion 18 becomes non-linear. The other terms in Equa-
tions 12 and 13 are linear with P

i
, as shown in the

Appendix. Fortunately, the non-linear terms are usu-
ally much smaller than the terms 16 and 17, and can
therefore be ignored.

If the fibre slides within the segment i, the unknown
rigid body displacement u

i
is not equal to zero. There-

fore, an additional equation must be stated. It is
derived by assigning a constraint equation between
the forces in the fibres at the adjacent cracks

P
i
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&
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where t
&
is the frictional shear flow (t

&
"s

&
w), having

a sign which depends on the direction of friction. If the
fibre ends slip, the embedded length decreases with the
rigid body displacement u. Thus the additional equa-
tions for the left and right ends, respectively are:
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where l*
1

and l*
n`1

are the fibre embedded lengths
within the fibre end segments. The differences in the
signs of u are due to the fact that u is positive to the
right. If the ends of the fibre and its symmetry fibre
overlap, there will be two regions to be analysed — the
overlapping and the non-overlapping one. Between
them, the compatibility condition is as in Equation 18,
the right-hand side now being zero.

The compatibility condition 18, and Equations 19,
20 and 21 lead to a system of equations, one or two per
crack, depending on whether or not the fibre slides
within the segment. If the fibre does not slide within
segment i, the rigid body displacement u

i
is zero, and

the corresponding equation is ignored. For illustrative
reasons, it is assumed that at the right fibre end the
embedded length extends beyond the middle of the
segment so that the fibre and its symmetry fibre par-
tially overlap, but that at the left side they do not
overlap (see Fig. 3). For a fibre bridging n!1 cracks,
the equation then becomes
t
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Figure 3 A model of crack bridging.
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where l*
n

and l*
n`1

are the non-overlapping and the
overlapping lengths of the right end, respectively. The
terms c

ij
are the coefficients of the fibre forces at the

cracks, i referring to the displacement *
i
at the crack i,

and j referring to the force P
j

at the crack j. The
coefficients are sums of two terms, one for either side
of the crack, and are obtained from the analysis of the
relative displacements at the cracks. They are cal-
culated for fixed debonded lengths which, in fact, are
unknown and are solved by iteration from the shear
stress conditions as outlined in the following section.
The right-hand vector R consists of the constant terms
of the functions for the displacements at the cracks.
The derivation of the displacements for one case is
shown in the Appendix.

4. Solution strategy
In addition to the variables in Equation 22, the lengths
of the debonded zones are unknown as well. In this
study, the strength-based theory is used, which means
that the bond fails when the interfacial shear stress
between the fibre and the matrix exceeds the bond
strength. It should be noted that the same theory
remains valid when using a fracture-based theory, i.e.
the bond fails when the energy release rate at the
interface exceeds a given threshold value [9, 11]. In
that case the threshold value is not constant but de-
pends also on the fibre diameter and the fibre volume
content. Within the debonded zone, a frictional bond
with a constant shear stress is assumed.
The condition for the debonded lengths is that once
debonding has started, the shear stress at the end of
the elastic region must be equal to the bond strength.
The equation thus formed is non-linear and is solved
iteratively by increasing the debonded lengths gradually.

Other conditions for the debonded lengths are as
follows: if the shear stress at the end of the elastic zone
is less than the frictional stress, the bond is assumed to
return to elastic at that point. This ‘‘re-bonding’’ pro-
cess is gradually continued, until the shear stress at the
end of the zone reaches the frictional stress. ‘‘Re-
bonding’’ can occur, for example, when unloading
takes place after the fibre at the adjacent end segment
has reached the maximum load. It should be noted
that the ‘‘re-bonded’’ zone is not really bonded, but
that the shear flow is lower than the frictional bond.
Therefore, another variable must be introduced,
namely the ‘‘active debonded length’’ to distinguish
between the bonded, unbonded, and ‘‘re-bonded’’ re-
gions. The ‘‘re-bonded’’ zone returns to frictional as
soon as the shear stress exceeds the frictional stress.

With the two-fibre system, the purely frictional
bond theory cannot be used in a general case, even if
the fibre has totally debonded. Theories in which
a purely frictional bond is assumed have successively
been used for the pull-out problem, or in single frac-
ture analysis. One approach is to assume that the
whole fibre force at the crack is transferred to the
matrix along the length P/t

&
[7] (Fig. 4a), but it was

later noticed that the longitudinal displacement in the
matrix may exceed that in the fibre, which is physically
impossible [10]. The frictional bond theory can still be
used if assuming a zero friction along the length where
the strain in the fibre and the matrix are equal [15]
(Fig. 4b).

Let us study a case, in the two-fibre system, in which
the fibre and its symmetry fibre overlap within the
fibre end segment (Fig. 4c). Before dynamic slip a point
can be found where the strains in the fibre and the
matrix are equal. If the shear flow continues as t

&
, the

strain in the matrix exceeds that in the fibre, which is
physically impossible. On the other hand, if the shear
flow becomes zero, the strain in the fibre exceeds that
in the matrix and has to change again to t

&
. An

intermediate value t
&
/Q] for the shear flow would main-

tain equal strains in the fibre and the matrix. This
contradicts the purely frictional theory with a single-
valued shear flow. Therefore, it is suggested that along
the region where the shear flow must be less than t

&
,

the full bond conditions prevail.
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Figure 4 Theories of a frictional bond. (a) Shear flow, t
&
, (b) shear flow, either t

&
or zero, (c) shear flow t

&
or t

&
/QK .

Figure 5 Two-fibre model at fibre end. (a) Whole segment, (b) overlapping region, and (c) non-overlapping regions.
The fibre breaks or yields if the stress exceeds the
fibre tensile strength. When the fibre breaks, continu-
ity at the crack disappears because even if the fibre
forces at both sides of the cracks are equal, namely
zero, the compatibility condition 18 is no longer valid.
The coupling in the system equations at the breaking
point disappears, and for computational efficiency,
only that part of the fibre can be analysed where the
results are needed for the statistical analysis of the
composite. The breaking point now becomes the fibre
end and must be analysed as such. In the case of fibre
yielding, the condition is that the fibre force at the
crack must be equal to the yield stress.

5. Fibre ends
In the statistical analysis the fibre volume content is
assumed to be equal everywhere in the composite.
Thus one fibre follows the other at the fibre end. The
relative displacement of the fibre at the crack depends
not only on the fibre force at the crack, but also on the
fibre forces at the adjacent cracks. Hence there is
coupling between subsequent fibres. In a general case,
there would then be too many equations to solve; to
4218
limit their number only a single fibre is analysed at
a time. This means that the coupling between sub-
sequent fibres must be eliminated. Let P

1
be the first

(or last) unknown fibre force in Equation 22 (see
Fig. 5). To derive the fibre displacement at the crack,
the fibre force P

2
in the subsequent fibre at the crack is

needed. However, it is not included in the unknown
variables, and must be approximated before analysis.

At the end segment, the fibre and its symmetry fibre
may overlap, depending on the embedded length. If
the fibres overlap, there are three regions, an overlap-
ping and two non-overlapping lengths (Fig. 5). For all
regions, separate equations must be formed. Between
the regions a compatibility condition holds, which
says that there is no crack, or that the relative dis-
placements at both sides of the interface must be
equal.

In the region where the fibres do not overlap,
a single fibre system is assumed for the following
reasons: first, the two-fibre system would be too com-
plicated with respect to the attainable improvements,
due to possible non-symmetry of debonded lengths
(see Fig. 5c). Second, the fibre force at the adjacent
crack has to be defined before analysis. If the fibre end



TABLE I Relative errors (%) of forces in the fibre at the cracks,
the force in the matrix in the middle of the segment, and the average
matrix force, due to the simplified approach at the fibre end

E
&
/E

.
»

&
Fibre Fibre Matrix Average

(%) force
at left
crack

force
at right
crack

force
in the
middle

matrix
force

100 5 6.0 !6.6 1.5 2.1
100 10 23.0 !15.8 6.3 11.1
100 30 63.8 !28.0 4.0 73.1
10 30 1.1 !1.1 0.1 5.1

does not extend beyond the middle of the segment, it
can be analysed independently without knowing the
force in the other fibre. On the other hand, if the fibre
ends overlap, the force in the other fibre is needed. The
embedded length of this fibre is shorter than half the
segment length, making it possible to obtain the pre-
determined force from an independent analysis. Third,
in the limit case when the embedded length is either
0 or s, s being half the crack spacing, both methods
lead to the same result. The validity of the simplified
method must be studied for intermediate embedded
lengths.

To study the validity of the simplified approach at
the fibre ends, where the non-overlapping regions are
treated as independent, some example calculations
were performed for the fibre end segment using both
theories. The bond was assumed to be elastic. The
relative fibre displacements at both cracks were
assumed to be equal to 0.01lm. The geometrical
and material parameters were as follows: crack
spacing 2s"10mm, shorter fibre embedded length
l"3mm, moduli ratio of the matrix and the fibre
E
&
/E

.
"100, and fibre diameter d"0.5mm. The fibre

volume content, »
&
, and thus the bond modulus, j,

varied. A large ratio of elastic moduli was chosen, as
this leads to the greatest inaccuracy compared with
the two-fibre analysis.

The examples were analysed using fibre volume
contents of »

&
"5%, 10% and 30%, and bond moduli

of j"2.10]1012, 2.68]1012, and 5.58]1012 Nm~3,
respectively. Relative errors of the forces in the fibre at
the cracks, the force in the matrix in the middle of the
segment, and the average matrix force due to the
simplified approach were computed and are shown in
Table I.

The simplified approach was found to give too high
a fibre force for the shorter fibre, and too low a force
for the longer fibre. It also resulted in higher shear
stresses at the fibre ends, affecting the ability of debon-
ding onset at the embedded end to be predicted at
a smaller crack width. In addition, it gave a higher
matrix force, leading to an exaggerated composite
strain approximation, or to prediction of cracking at
a too low a load level.

Another analysis was performed with a lower
stiffness ratio of E

&
/E

.
"10, »

&
"30%, and

j"6.18]1013N m~3. Fig. 6 shows the distributions
of the fibre force, the interfacial shear stress, and the
matrix force. The relative errors are shown in Table I.
The relative errors were found to increase with
Figure 6 Distributions of (a) fibre force, (b) interfacial shear stress and (c) the matrix force for the fibre end segment, with E
&
/E

.
"10,

»
&
"30%, and j"6.18]1013 Nm~3. The horizontal lines represent the average matrix force. (—) Two-fibre system, (— — —) independent

fibres.
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Figure 7 (—) Sum of adjacent fibre forces at the crack, (— — —) the matrix force in the middle of the segment, and (- - -) the average matrix force
within the segment as a function of normalized fibre embedded length. The horizontal lines represent the mean values of the curves.
increasing fibre content, and to decrease with decreas-
ing stiffness ratio E

&
/E

.
. If the stiffness ratio is less

than 10, and if the fibre volume content is less than
30%, the errors of the simplified approach are less
than 5.1%. For a stiffness ratio of 100, the accuracy of
the simplified approach is reasonable only for low
fibre contents.

In order to study whether the fibre end region has
any effect on the matrix force compared with a con-
tinuous fibre, an analysis was performed in which the
fibre location varied. In this way, a relationship
between the matrix force and the fibre embedded
length could be obtained. The following material
parameters were chosen for the composite: moduli of
elasticity of fibre and matrix E

&
"210 GPa and

E
.
"GPa, respectively, fibre length l

&
"50mm, fibre

diameter d"0.5mm, fibre volume content »
&
"5%,

and bond modulus j"2.48]1013Nm~3. A crack
spacing of 2s"12.5mm, and crack width
w"0.048lm were chosen. It was also assumed that
the fibre is oriented perpendicular to the cracks, and
that full bond exists. Fig. 7 shows the sum of the fibre
forces at adjacent cracks, the matrix force in the
middle of the segment, and the average matrix force
within the segment as a function of the normalized
fibre embedded length l/2s.

In the end segment, the sum of the fibre forces
decreases as the embedded end approaches the seg-
ment width. Correspondingly, the embedded length of
the subsequent fibre at the adjacent crack approaches
zero. Therefore, its contribution at a normalized em-
bedded length of 1 is zero. The matrix force decreases
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with increasing embedded length. On the other hand,
as the normalized embedded length approaches 1/2,
the matrix force in the middle of the segment ap-
proaches that of the fibres at the crack. This is because
at the normalized embedded length of 1/2, the fibre ends
are located in the middle of the segment and have zero
forces, hence the total force is only carried by the matrix.

It can be seen that when the fibre extends beyond
the segment (l/2s), the forces are of equal magnitude,
with the exception of an embedded length of twice the
crack spacing, when the forces tend to be somewhat
lower. Because in this case the fibre embedded lengths
at the end segments are 2s, the forces at the outmost
cracks are decreased, affecting the forces at the other
cracks.

The horizontal lines in Fig. 7 represent the mean
values of the two curves for the matrix forces. As can
be seen, the fibre end region has little effect on the
mean value of the average matrix force or on the mean
value of the matrix force in the middle of the segment.
On the other hand, the mean fibre force at the crack is
seen to decrease due to the fibre discontinuity. It
should be noted that the mean value of the fibre force
is computed using embedded lengths from 0 to l

&
/2,

while the mean values for the matrix forces are cal-
culated using the region from s to s#l

&
/2. Therefore

the average fibre force is not shown in Fig. 7. Never-
theless, it can be estimated given that the curve corres-
ponding to the sum of the fibre forces with normalized
embedded lengths varying from 0 to 1/2 is the mirror
image of the curve with normalized embedded lengths
varying from 1/2 to 1.



6. Examples
In this section, the problem of a fibre bridging several
cracks is studied by solving Equation 22 and plotting
the fibre force and the interfacial shear stress distribu-
tions along the fibre at different crack widths. The
effect of different micromechancial parameters on
fibre mechanics are described in an internal report
[27]. The parameters include the stiffness ratio of fibre
and matrix, the fibre volume content, the fibre dia-
meter, or aspect ratio, and the interfacial frictional
shear stress. Because according to the ACK theory
(Aveston, Cooper and Kelly [1]), the crack spacing
can vary between certain values, its effect is studied
below. Consider the following material parameters as
an example.

Matrix:
#modulus of elasticity E

.
"21GPa

#tensile strength r
.6

"5 MPa.
Fibres:

#modulus of elasticity E
&
"210 GPa

#diameter d"0.5mm
#length l

&
"40mm

#volume content »
&
"5%.

Interface:
#bond modulus j"2.48]1013Nm~3

#shear strength s
6
"4MPa

#frictional shear stress s
&
"3 MPa.

A crack spacing of 2s"5mm is chosen according
to the ACK model, which gives a maximum crack
spacing of 4.45mm for a composite with aligned short
fibres and a purely frictional stress transfer.
The fibre being analysed is aligned with the direc-
tion of the external load. The location with respect to
the cracks is such that the fibre and its symmetry fibre
overlap at the left end, but not at the right end.
Moreover, the tensile strength of the fibre is chosen to
be so large that fibre rupture does not occur.

The force and the interfacial shear stress distribu-
tions at three different crack widths are shown in
Fig. 8. It can be seen that at a crack width of less than
0.3lm, the bond is elastic, and no iteration is needed
for solution of Equation 22. At a crack width of
w"1lm, debonding has progressed in all segments,
and the debonded zones can be seen as a constant
shear stress in the figure. The fibre’s right end is totally
debonded, resulting in a lower force at the crack than
at the other cracks. The absolute values of the shear
stresses ahead of the debonded zones are equal to the
shear strength. However, at the second segment from
the right, the shear stress ahead of the frictional zone is
equal to the frictional stress due to the ‘‘re-bonding’’
discussed in Section 4. The debonding progress to
a certain distance until the peak stress is reached.
Thereafter, the fibre unloads, causing the shear stress
in the elastic region ahead of the frictional zone to
decrease below the frictional value. The length of the
frictional zone is then gradually decreased until the
shear stress in the ‘‘re-bonded’’ zone reaches the fric-
tional stress. Before the onset of strain-softening
(bottom of Fig. 8), the fibre slips within several seg-
ments. The above comment on ‘‘re-bonding’’ holds
also here.
Figure 8 (a—c) Fibre force and (d—f ) interfacial shear stress distributions along a fibre with crack spacing 2s"5 mm of (a, d) w"0.3lm, (b, e)
w"1.0 lm, (c, f ) w"12.3lm.
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Figure 9 (a—c) Fibre force and (d—f ) interfacial shear stress distributions along a fibre with crack spacing 2s"9mm. (a, d) w"0.3lm, (b, e)
w"3.0 lm, (c, f ) w"21.0lm.
The fibre is also analysed with the maximum crack
spacing of 2s"9mm, and the results are shown in
Fig. 9. Now the fibre crosses only four cracks, and
from the distribution of interfacial shear stress in the
full bond stage, it can be seen that the curve becomes
horizontal in the middle of the segment, indicating
that the strains in the fibre and the matrix are equal
without stress transfer between the constituents. Com-
pared with the case of a 5mm crack width (Fig. 8), it is
seen that the fibre forces and the crack widths at the
onset of debonding are equal for both crack spacings,
but the force transferred to the matrix is higher with
a larger crack spacing. At the peak stress, the fibre
stresses are also equal, whereas the maximum crack
width is large with higher crack spacing.

7. Conclusion
The micromechanical modelling of brittle-matrix
composites reinforced with discontinuous fibres has
been extended to the multiply-cracked stage. In this
paper, the mechanics of a straight, smooth fibre bridg-
ing one or several cracks is studied. The analysis is
based on the assumption of a symmetry fibre, which
together with the fibre in question satisfies the equilib-
rium condition. The gradual debonding and pull-out
are included, assuming that once the shear stress at the
interface exceeds the shear strength, the bond fails and
a constant frictional bond prevails. However, if the
shear stress ahead of the debonded zone falls below
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the frictional stress, part of the frictional region ‘‘re-
bonds’’ and is analysed as having an elastic bond.

The force distributions within a segment are de-
scribed as functions of the forces in the fibres at the
cracks. The fibre displacements at the cracks relative
to the matrix are calculated for different cases of
debonded lengths. Using the compatibility condition
of the crack width, the system equations can be stated
and the unknown fibre forces and the rigid body
displacements solved.

Because the fibre is not continuous, there is a dis-
continuity at the fibre end which has to be analysed
separately. A simplified approach has been used,
which assumes that fibre regions which do not overlap
their symmetry fibre behave independently and are
thus analysed using a single-fibre theory. Only the
fibre ends overlapping are analysed as a two-fibre
system. This assumption is accurate, if the fibre/matrix
stiffness ratio or the fibre volume content are not too
high.

The fibre discontinuity has an effect on the forces in
the fibre and the matrix. However, in the elastic bond
stage, it did not seem to affect the mean value of the
average matrix force or the mean value of the matrix
force in the middle of the segment. On the other
hand, the mean fibre force at the crack was seen to be
lower due to the fibre discontinuity. In the frictional
stage, the difference between the continuous and the
discontinuous fibre is remarkable. The forces in the
continuous fibre are equal at adjacent cracks and the



load can be increased until the fibre breaks, whereas
the discontinuous fibre would rather slide out and the
maximum load at the crack depends on the embedded
length.

The model of a fibre bridging several cracks will be
used in a statistical model to compute the mechanics
of a composite under a uniaxial tensile load. The
composite model is described in Part II [28].
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Appendix. Analysis of fibres within a
segment
When the fibre extends through the segment, different
cases have to be analysed depending on how far the
debonding has propagated. In every analysis the force
distributions in the fibres and the relative displace-
ments at the cracks are derived. The force distribu-
tions are given in Equations 5 and 6 for the full bond
case, and in Equation 10 for fibre 1, if fibre 2 is
debonded. A corresponding distribution is derived for
fibre 2, if fibre 1 is debonded. Let l

1
and l

2
be the left

and right debonded lengths, respectively, for fibre 1,
and the right and left debonded lengths, resepctively,
for fibre 2. l is the length of the whole segment and
s half the segment length.

Four different cases can be deduced. The full bond
case is reported elsewhere [22], and the other cases in
an internal report [27]. Consider the case l

1
(s, l

2
(s

as an example. If debonding from neither of the cracks
has progressed further than the middle segment, there
exist regions with only a frictional bond at the ends,
only an elastic bond in the middle and, between them,
regions with both an elastic and a frictional bond
(Fig. A1). Let l

1
be greater than l

2
. Then the force

distributions in the fibres are
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Figure A1 A1 Distributions of fibre forces where both ends are
debonded less than in the mid-segment.

where tl
&
and tr

&
are the frictional shear flows between

fibre 1 and the matrix on the left and right side of
the segment, respectively. For fibre 2, tl

&
is the right,

and tr
&

the left frictional shear flow. Their absolute
values are equal, but their sign depends on the
direction of friction. It should be noted that tl

&
is

negative in Fig. A1. Moreover, P
1
"F

1
(0)"F

2
(l),

and P
2
"F

1
(l)"F

2
(0).

The continuity and symmetry conditions
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from which the coefficients A!F can be solved as
functions of P

1
and P

2
. The strain differences between
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the fibres and the matrix are [22]
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The relative displacements at the cracks are calculated
by:
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where *
1

and *
2

are the displacements at the cracks
where the fibre forces are P

1
and P

2
, respectively. The

displacements are linear functions of P
1

and P
2
. The

coefficients of P
1

and P
2

are then added to the terms
c
ij

in Equation 22, while the constants are added to the
right hand side vector R.
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